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TECHNICAL NOTE 2875

BEHAVIOR IN PURE BENDING OF A LONG MONOCOQUE
BEAM OF CIRCULAR-ARC CROSS SECTION

By Robert W. Fralich, J. Mayers, and Eric Reilssner

SUMMARY

An analysis is made of the behavior under a loading of pure bending
moment of a thin, infinitely long, pure-monocoque beam having a constant,
doubly symmetric, circular-arc cross section. Bending moments, deflec-
tions, and stresses are obtained. The analysis shows & nonlinear
behavior in bending which leads ultimately to a maximum moment and insta~
bility.

INTRODUCTION

The pure-monocoque beam, with no internal bulkheads, ribs, spars,
or stiffeners, represents a limiting structure which designers can
approach in an attempt to obtain thin hollow wings with low fabrication
and essembly costs. Examination of the structural behavior of the pure-
monocoque beam is, therefore, of interest in order to determine its
favorable or unfavorable characteristics. In particular, an understanding
of the nature and growth of the cross-sectional distortion that arises
from the tendency for the beam to flatten under longitudinal bending
loads is important. With sufficient flattening, the beam bending stiff-
ness can be reduced to a point at which the beam no longer will sustain
an increase in bending moment, and instability results. The related
problem in comnection with circular cylinders is well-known and has been
discussed by Brazier (ref. 1).

In the present paper a thin, infinitely long, pure-monocogue beam
having a constant, doubly symmetric, circular-arc cross section is ana-
lyzed under a loading of pure bending moment (fig. 1). This loading
produces identical deformation of all cross sections and, therefore,
permlts a relatively simple structural analysis to be made. Elastic
behavior is assumed and local buckling is not considered.

In an actual pure-monocoque circular-arc wing, these idealized con-

ditions of structure and loading would not be realized - the cross sec-
tion and bending moment would vary spanwise and the bending moments
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would be produced by lateral forces applied directly to the wing surface.
At least the order of magnitude of the distortion of any cross section
in the actual wing (away from the root or tip bulkheads) could probably
be determined, however, by assuming the cross section to be part of an
infinitely long uniform beam subjected to a uniform bending moment equal
to the actual local bending moment.

An analysis of the idealized structure is given in the appendix.
The body of the paper contains the results of the analysis and describes
the distortion characteristics and stresses of the pure-monocoque beam
under uniform bending moment.

Part of the work presented herein was carried out in June 1951
while the last-named author was temporarily at the Langley Laboratory,
and it was continued by correspondence.

SYMBOLS

A, B, C constants
b semiwidth of cover plates, in.

Et3
D flexural stiffness of cover plates, oV in-1b

12(1 - 12)

E Young's modulus for beem material, 1b/in.Z
h rise of circular arc measured from undeformed middle sur-

face of beam to middle surface of covers, in.

IH moment of inertia of undeformed beam cross section, in.h

k curvature of beam axis, in.-1

My, My plate bending moments on cross sections perpendicular to x-
and y-axes, respectively, in-1b/in.

m total beam bending moment, in-1b

Ny, Ny plate middle-surface forces in x- and y-directions, 1b/in.

Qy plate shearing force in xz-plane, 1b/in.
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r radius of curvature of circular-arc cross section, in.

t thickness of cover plate, in.

W radial deflection of point in middle surface of cover of
bent beam, in, '

w total radial deflection of point in middle surface of cover
plate, in.

X, ¥, coordinates

7 parameter, ¥ = Ab

€x plate axial strain

€y strain at surface passing through beam edges

o]

Y parameter defined by k- E%¥g, in.-1

m Poisson's ratio for beam material, p = 0.316 for all
computations

Oy local buckling stress of compression cover

cr
P, @ stress functions
Vh linear differential operator defined by
L L L

—au+2 2 2+3h
ox 0x~dy oy

Subscripts:

b bottom or tension cover

t top or compression cover
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RESULTS

Relatlonship of Bending Moment and Beam Curvature

For calculations of the over-all stiffness of a beam, a knowledge
of the relaetionship between bending moment and longitudinal beam curva-
ture is important. This relationship for the pure-monocogue beam is
shown nondimensionally in figure 2.

Unlike solid beams or shell beams with internal stiffening, which
have linear moment-curvature relatiqnships, the pure-monocoque beam
exhibits a nonlinear relationship. This nonlinear behavior is a conse-
quence of the continual reduction 1n cross-sectional moment of inertia
as bending progresses. This reduction in moment of inertia or resist-
ance to bending leads ultimately to a meximum moment. The slight spread
in the vicinity of the maximum among the curves for different values of
t/h is a result of taking into account the shift in the neutral surface
of the beam due to the unsymmetric behavior of the top and bottom covers.
If this small effect is neglected, the maximum value of the bending

EtI
moment is m = 0.285 -;EQ, corresponding to a nominal midchord critical

gtress of 0.285 Et based on the geometry of the undeformed cross sec-

r
tion, or & midchord critical stress of 0.36 %;- based on the geometry
of the flattened configuration. This maximum value of bending moment
which occurs at a beam curvature of k = 0.52 g%, may be considered to
be the upper limit of the strength of the beam.

Distortion of Cross Section

A measure of the cross-sectional distortion is given by the magni-
tude of the beam-thickness change at midchord. The ratio of midchord
beam thickness of the deformed cross section ht(O) + hb(O) to midchord

beam thickness of the undeformed cross section 2h 1s plotted in fig-
ure 3 as a function of the beam-curvature parameter. From the figure,
the flattening is seen to be appreciable over most of the loading range,
and at the value of the beam-curvature parameter corresponding to the
maximum bending moment, flattening has reduced the origlnal beam thick-
ness by almost 30 percent. The effect of different +t/h ratios does
not appear in this plot since the thickness change 1s independent of
neutral-surface shift.
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The cover deflections at every chordwise point may also be of
interest. These deflections can be computed from equations (48) and (49)
or equation (65) in the appendix. A typical chordwise plot of the cover
deflections, in which the small effect of the neutral-surface shift is
neglected, is shown in figure 4 for a beam loaded very nearly to its
maximum moment. .

Stresses

The magnitudes of the axial stresses in the beam are best indicated
by the magnitudes of the axial stresses at the mldchord where they have
their greatest values (at least up to maximum moment). For each cover,
the ratlo of midchord axial stress to the linear-theory stress at the
same beam curvature is plotted in figure 5 as a function of the nondimen-
sional beam-curvature parameter for values of t/h equal to O and O.k4.
When compared at equal beam curvatures, the stresses of the present the-
ory are always of less magnitude as a conseguence of the flattening.

The ratio of midchord axial stress for each cover (with the small
effect of neutral-surface shift neglected) to the linear-theory stress
at the same bending moment is plotted in figure 6 as a function of the
nondimensional bending-moment parameter. The result indicates that, at
the same value of bending moment, the cover stress in the present theory
is greater than the linear-theory stress. This condition is a result of
flattening decreasing the moment of inertia more rapidly than it decreases
the beam thickness.

DISCUSSION

The results indicate a nonlinear relationship between bending
moment and beam curvature that arises from the low chordwise bending
stiffness of the covers and ultimately leads to an instability. The
results also indicate that, in general, an appreciable profile flexi-
bility exists which may be detrimental from an aerodynamic point of view.
In order for completely hollow wings to resist large distortions, addi-
tional chordwise bending stiffness must be realized in the covers (e.g.,
by integrally stiffened or sandwich construction).

In the analysis the effect of chordwise middle-surface stresses on
the deflections is neglected. Order-of-magnitude considerations indi-
cate that such an assumption is Justified for cross sections where

(b/r)2 and (t/h)2 are small compared with unity. These conditions
are satisfied, in general, for shallow sections such as would be con-
sidered for thin wings.
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The effect of local buckling of the compression cover has been
omitted from the analysis. Its importance with respect to the present
problem can, however, be estimated in the following manner:

The theoretical buckling stress in uniform compression of a long
curved plate is given by the relation

Bt
chr = 0-6 p

which applies to both simply supported and clamped long plates if the

2
b 2
curvature parameter —_.\/1 - is eater than about 60. In this
P : V u &r

range more than one buckle appears in the circumferential direction and
the buckling stress becomes practically independent of edge conditions.

It is well-known, however, that the "classical" stress of 0.6 %} is

never attained in actual curved plates and requires modification by an
appropriate “"knockdown" factor. This factor is a function of the ratio
of radius to plate thickness and has been discussed in many papers, for
example, reference 2. In this reference the buckling stress is given by
the empirical relation

OXop = (0-588 - 0.000433 %) E_:'_

cr

for plates having radius-thickness ratios between 500 and 1,000. The
knockdown factor in the region r/t > 1,000 can be taken as the same or

less then that at %: 1,000.

Local buckling of the compression cover in bending is estimated to
occur if the stress measured at the midchord is between 20 and 40 per-
cent higher than the stress required for local buckling in uniform com-
pression. The estimates are based on curved-plate linear-theory con-
siderations and experimental results for cylinders (ref. 3). If an
average value of 1.3 is assumed for the ratio of the critical stresses,
the stress for local buckling in bending becomes

r\ Bt
Ox,,. = (0.765 - 0.000563 %—) ok



NACA TN 2875 T

Since the midchord stress corresponding to flattening instability is

approximately 0.36 E; (see fig. 5), local buckling of the compression

cover would be expected to occur after flattening instability for

r/t < 720 and to precede flattening instability for r/t > 720. By
taking flattening into account, however, this value of r/t is decreased,
gince the chordwise curvature of the covers, and hence, the critical
compressive stress, is decreased.

CONCLUDING REMARKS

An analysis is made of the behavior under a loading of pure bending
moment of & thin, infinitely long, pure-monocogue beam having a constant,
doubly symmetric, circular-arc cross section. Bending moments, deflec-
tions, and stresses are obtained. The analysis shows a nonlinear rela-
tionship between bending moment and beam curvature that leads ultimately
to a maxinum moment and instability. If no interaction is assumed between
local buckling of the compression cover and flattening instability, locel
buckling should precede flattening instability of the beam when the
radius-thickness ratio of the covers is greater than about T20 and flat-~
tening instability should precede local buckling when this ratio is
smaller than about T20.

Langley Aeroneutical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., October 16, 1952.
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APPENDIX

ANATYSIS OF IDEALIZED STRUCTURE
UNDER LOADING OF PURE BENDING MOMENT

Statement of Problem and Assumptions

The behavior of the jdealized structure under & loading of uniform
bending moment can be determined from consideration of the equilibrium
conditions for a small element in a chordwise strip in each of the covers
of the bent beam (see fig. 7). A reduction of the problem to the analysis
of a chordwilse strip is Jjustified on the basls of symmetry considera-
tions, since all chordwise sections behave identically under the given
loading conditions. The small elements and the resultant forces and
moments acting upon them, together with the sign convention used, are
shown in figure 7. The circumferential middle-surface forces Nyt

and Nyb are not included in the analysis since order-of-magnitude cal-

culations indicate that, for shallow cross sections, the effect of the
circumferential forces on the deflections are not of first-order impor-
tance.

The relative simplicity of the following analysis end the resulting
explicit formulas, in contrast with Brazier's work on the circular cylin-
drical shell, are due to the fact that the shell sections considered are
shallow. The present analysis may be readily extended to other than
circular-arc sections by retaining the shallow-section assumption.

Derivation of Basic Equations

Since all chordwise sections behave identically under the given
loading condition, only force equilibrium in the z-direction and moment
equilibrium gbout the x-axis have to be considered. For a small element
in a chordwise strip of the top or compression cover, these equilibrium
conditions are
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& " Yy =0 (2)

vwhere -k 1is the beam curvature, which is constant‘along the length of
the beam. For a small element in a chordwise strip of the bottom or
tension cover, the equilibrium conditions are

W

dy

dl‘d’.‘y.b . (1)

" %p =0

- Mg k=0 (3)

and

Elimination of Qyt and be from each of the pairs of equations yields

a=m
Yt
o2 - Nx k=0 (5)
and
dQMy.b
7 " Tk = O (6)

Since all chordwise sections behave identically, the cross-sectional
distortion is Independent of the axial coordinate x. As a result, for
each of the chordwise strips, the moment-distortion relationships from
plate theory become

D dewt(Y) -

My, = - .- (7)
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and

Myb=-D-(-ii:§;—y)—-uk (8)

1]

where the radial deflections Wi(y) and Wp(y) are positive when
directed downward in figure 7. Substitution of these relations for Myt

and E%b into the two equilibrium equations (5) and (6) yields

d t()’) ' _
D —5— - My Je = 0 (9)
dy
and
o M) Ny k =0 (10)
dyh

The axial forces Nit and Nib can be written in terms of the

axial strains as

Ny, = Btey, (11)
and
Nxb = E'l:exb (12)

The strains, measured from the as yet undetermined neutral surface of
the cross section, are

o = -kh( ; Y_Q) - e+ HL(y) (13)
o
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and
Cxp = kh( - {,"E) - et Ky (v) (1k).
where ¢ is the strain at the surface passing through the beam edges

Xa

and h(l - ZZ) is the dista.ncé from this surface to the middle surface
b

of the undeformed covers. The latter quantity gives the rise at any
point y 1in good approximation for shallow sections. With the fore-
going relations, the equilibrium equations (9) and (10) become

Wi (y) 2
-D —‘—%t‘l;— + Etk k.h(l - %E) + Gxo - kW-t(y) =0 (15)
and
-Df_.b_(f_)_-Etkkhl-ﬁ-ex + wip(y)| =0 (16)
ay* b2 ©
-y
Rearranging the terms gives
d
D nly) | Btk (y) = Etkeh(l - ﬁ) + Btke (17)
avt 2 )
v b
and
ai () o
D—P Etkzb}b(y) = _Etk°h (l - %) + Etkey (18)
c'i:,rh b °

The two foregoing equations are the differemntiel equations of eqgui~
1ibrium for the chordwise strips in each of the covers. ZEach equation
may be noted to be that of a beam of unit width on an elastic founda-
tion, where the left-hand side of each equation represents the restoring
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forces due to the cover bending stiffness and the elastic foundation
and the right-hand side represents the forces causing deflection.

The deflections can be obtained from the equilibrium equations for
a given set of boundary conditions, which in this problem are taken to

be
We(tb) = Wy(3b) = 0

aWy(+b)  awy,(£D)

dy dy

and

- dW(2b) a2, (+b)
- + +
ay® ay?

These conditions indicate that no edge deflections exist relative to the
bent beam, that the edge angles are maintained between the two covers,

and that no resultant edge moments are permitted. The last condition is
obtained from M_Yt(ib) + My (¥b) = 0 by virtue of the moment-distortion

=0

relationships.

Before the deflections can be completely defined, the strain at the
surface passing through the beam edges is required. Because of symmetry,
no resultant axial force exists in the beam at any cross section. This

condition is given by the relation

b b
Ibnxt@+[bnxbdy=o (19)

and leads to the relatlion for the strain at the surface passing through
the beam edges

(o]

b
& = fgj:b E‘T‘c(y) + Wy (y)| ay (20)

when the force-strain relations are substituted into equation (19).
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Alternate Derivation of Basic Equations

The basic differential equations can be derived by considering the
total deflection of small elements in chordwise strips of each of the
covers measured from the initially nonstressed position of the elements.
Since the deflections measured in this menner will be large compared
with the cover thicknesses, the equilibrium conditions for the small
elements must be expressed by the equations of large-~deflection theory
of shallow cylindrical shells (ref. 4).

For the top cover, these equations are

2
%th)t(x,y) _ aewt(x,y) B azwt(:,Y) ‘Szwt(x,y) + 1 (21)
ox oy ox L dy2

H

Po(x,y) Pwy(xy) quJt(X,y) (x,y) L1
dy° dx° T

ot aecpt(x.'Y) azw-t(x:Y)
dx dy ox Oy

D Vuw.b(x,y) =t

(22)

and for the bottom cover, the equations are

Pen)|° Pl Pnley) 1]
2 3y T

r

%vl‘cpb(x,y) =

ox Oy

and

b e )_taetpb(x,y) Bewb(x,y) Betpb(x,y) Py (x,y) 1
VYl = E TR o2 02 %2 T

32€Pb(x,}’) 3%, (%,¥)
dx Jdy dx Jy

(2k)
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where wi(x,y) and wy(x,y) are the total deflections and P4 (x,¥)
and Qb(x,Y) are the respective stress functions of the covers. The

relationships between the stress functions and the middle-surface forces
in the covers are

Poglny) YWy Foloy) Yy Ppylny) Ty |
Tt dy2 t dxdy ©

o2 )
- (25)

O, (x,y) Ny, Poy(x,7) T o (x,y) T
-2 -

3x2 dy2 t ox oy  °©

o

These equations together with the boundary conditions determine
e (%,¥7), w(x,¥), oux,y), and ¢u(x,y). If use is made of the iden-

tical behavior of each cross section, the deflections of the elements
may be assumed to be

wi(x,y) = -5 ke + Wig(y) (26)
and
wp(x,y) = —-é— o + Wy (y) (27)

where --%-kx2 1s the parabolic deflection of the beam edges due to the

uniform bending moment and Wt(y) and Wb(y) are the chordwise deforma-

tions of the covers. Since the circumferential forces N&t and N&b

are not included in the analysis, the stress functions may be taken to be

2,(¥) (28)

qat(x,y)

Pp(%,5) = o (¥) (29)
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Substitution of the relations for the deflections and the stress
functions into the large-deflection equations gives

L
% d QtiY) x dgwt(Y) N %’ (30)
ay ay? :
2
D a W (y) -tk d ‘Dt(}f) (31)
ayt ay2
and
4 2
%d %iy) . a<w, (y) '-';]F:' (32)
ay ay?
ati (3) - 3% () (33)
ay* ay?

After the first equation 1n each case is integrated twice, the result is

2
1 3y) :;:;_y) = Wig(y) + Lo + cay + ¢ (34)
and
1 dchb(y) ﬁ

From symmetry considerations, C; = C3 = 0 8o that substitution of these

2 2

d“o(y) a“e,(y)
t ; %

ay® ay®

expressions for into the remaining two equations

gives
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D d—tiy—) + EtkW,(y) = -Eﬂg—ﬁ - EtiC, (36)
dy
and
a 2
D _d_:;l(fﬁ + Etkzk‘b(y) = Efgl— - EtkC), (37)

The boundary conditions on the total deflections wy(x,y)
and w,(x,y) are :

wi(x,2b) = wy(x,+b) = -% x®
Awy(x,%D) _ dwy (x,+b)

oy Sy

and

Myt(x,ib) + Myb(x,ib) =0

so that the corresponding boundary conditions on W¢(y) and Wy(y)
become

Wi(£b) = Wy(ab) = 0

dW(+b) _ @ (+p)
dy dy

and

a3 (+b) @ (b)
N -

ay2 dy=
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The conditions necessary for determining Co and C) are

| Ny, (#D) = Ny (4b) (38)

fb b )
N dy+f Ny, dy =0 (39
3 X b Xp

which account for continuity of axial forces at the edges and zero result-

ant axial thrust. If, in these equations, Nxt and Nkb are written

in terms of deflections by use of the relationships between axial forces
and stress functions and between stress functions and deflections, the
following equations are obtained:

2
Lt cy-0y=0 (ko)

b
kf_b E\Tt(y) + Wb(yﬂ ay + 2b(Cp + Cy) = 0 (k1)

The simulteneous solution of these equations for C, and C) yields

b
Co = -kh - %Ib Eft(}’) + W‘b(y_z] dy (k2)
and
b
Cy = kh - %f_b E’t(y) + Wb(yzl dy (43)
. where
-
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Substitution of these expressions for Co and C) into the equi-
librium equations (36) and (37) results in

5 ati(y)

B + Etk W (y)
dy

b
Etk2h<l - f—) + Btk %f_b Ebc(y) + wb(yZI dy

b2

(4h)

and

a, (y) P
D —a EtkoW, (y) -Etk2n<1 - fg) + Btk %/:b Ebc(y) + Wb(y_)_-l dy

(45)

The two foregoing equations are identical with the equilibrium equa-
tions derived in the preceding section since the integral appearing in
these equations is recognized as ¢y , the strain at the surface which

(o]

passes through the beam edges.

Solution of Basic Equations

The differential equatlons for the deflections of the covers
(egs. (17) and (18)) are

D 2y(y) + BtkFW,(y) = Etkn (1 - ﬁ) + Btke

ay™ b2 %o

and

n 3

D yly) + Bt (y) = -Etkah(l - 12_> + Etke,
dy b ©
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These equations upon division by D become

O

f:) .

be

ahw €x
) i) = - B s k2o
ay™* b2 k
J
and
a'Wply) oy b i &
dll- +]-l-)vw‘b(y)=-ll-).h(l—ﬁ2 +ll->\.—-1;-'
J b
where
hah = EEEE
D
The solutions are
Wi (y) = Ay cosh Ay cos Ay + By sinh Ay sin Ay + h(} -
and -
Wp(y) = By cosh Ay cos Ay + By sinh Ay sin Ay - h(l -

ﬁ) .

pe

19

(46)

(%7)

(48)

(49)

where only two arbitrary constants are required in each solution because

of symmetry.




If use is made of the boundary conditions and the relation for determining exo, the con-
stante become

ginh ¥ sin y
sinh 27 + sin 2y

Ay _ b
h Ty

=

5|k
~1
I

L

. s o i~ S ) -
ginh 27 + sin 27)sinh ¥ sin 7 - (sinh 27 - 8in 2y)cosh ¥ cos ¥

(einh 27 + sin 2y)(cosh 2y + cos 27) —J {50)

w
—
H
1
-
o
—

(sinh 27 + sin 2y)sinh 7 8in 7 - (sinh 27 - ein 2y)cosh 7 cos ¥ (51)
(einh 27 + sin 27)(cosh 2y + cos 27)

1_3_'3'::}_ cosh ¥ cos 7
h 7 s8inh 2y + sin 27

+

t
by (sinh 27 - ein 27)sinh 7 sin 7 + (sinh 2y + sin 27)cosh ¥ cos ¥ (52)
2) (sinh 27y + sin 27)(cosh 27 + cos 2y)

(o

02

clge ML YOVN



e —— e

and
?E - _E_ cosh 7 coB8 ¥
h = 7 sinh 27 + 8in 27
.t
h (sinh 2y - sin 2y)einh ¥ sin 7 + (sinh 27 + sin 2Y)cosh ¥ cos ¥ (53)
Vel 52) (sinh 27 + sin 27)(cosh 2y + cos 27)
V3\L -
where
L 2\ [ kr
=)~b=\/3_21- —
7 ( ”)t/h
and

be = 2rh

The relation for ¢ obtained from equation (20) and used in eveluating the constants Ay,

X5

2
. pkb? sish 27 - sin o
Ay, 3By, and By, 18 & 272 sinh 27 + Bi ?Z. This result shows that the shift of the

neutral surfaece is in the direction of the tenslon cover plate.

With the constants defined, the deflectlion at any polnt in the cross section can be deter-
mined.

Glge NI VOVN

e
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Beam Bending Moment

The beam bending moment at any cross section is determined from the
sum of the moments acting on the cross section. If the bending moments
of the covers about their own middle surfaces and the bending moments of

the axial forces Nxt and Nxb dbout the neutral surface of the cross

section are taken into account, the total bending moment is

b b b . €x
m=j:betdy+jibebdy~v/ibnxt|E(1-b}£2>+T°-wt(y) dy +

b €x
f . Nbe(l - §> - 5= + Wy(y)|ay (54)

After substitution for Nxt

relationships (11) and (12) and for Mkt and be as given by the fol-
lowing moment-distortion relationships obtained from plate theory,

and Nxb as given by the force-strain

M, = -D k+u——d2wt2(y) (55)
_ ol
and
ZH
VRS B2} (56)
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equation (54) becomes

b
m = -D\/p
b

b
Etkk/w
b

b
Etk\/ﬂ
b

23‘
- a4 () . a2, (y)
T T2 ay2
_ . 2
f( -§)+—;°—-Wt(y):ldy+
_ i . 2
h< ; §) - 2wy (y)| @ (57)

With the bending moment reduced to a function of the deflections and
the deflections defined by the equatlons of the preceding section, the
bending moment can be evaluated to give in terms of nondimensional para-

meters
t/n t/h |32(1 - w2)\W
15(cosh 2y + cos 2y) 1 pe ﬁ3)272(cosh 2y - cos 27) | _
1673(sinh 27 + sin 27) | 8(1 - u2)\R/ (cosh 27 + cos 27)
15(cosh 2y cos 2y + 1) |, p2 (g)z y2sinh 2y sin 27y
4y2(sinh 2y + sin 2y)2 24(1 - uz)\h (cosh 2y cos 2y + 1)
(58)
Where
kr 72
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and Iy, the moment of inertia of the undeformed cross section, in which

the moment of inertia of the plates about their own middle surfaces is
neglected is defined as

b 2
- il _32,..2
Io_ejjbElé-bz tdy—l5tbh

mr/EIL

The moment parameter __7——9, plotted against the beam-curvature para-
t/h
meter —%5 for several values of t/h, is shown in figure 2.
t/h

Cross-Section Distortion

The magnitude of the cross-section deformation may be given in terms
of the ratio of beam depth under loading to beam depth of the unloaded
gection measured at the center of the cross section. That is,

he(0) + 1,(0) ) ginh y siny (59)
oh B 7(sinh 2y + sin 27)
where
he(y) = h( - §> - ()
and
hy(y) = h( - iﬁz) + Wy (y)

This ratio, plotted against the beam-curvature parameter, is shown in
figure 3.

The shape of the deformed cross section may be found from the equa-
tions for chordwise deflection of the covers. If the small effect of €x
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is neglected so that Wi(y) = -Wu(y), the deformed shape of each cover
is given by

hi(y) _ by, (y) _ 4(sinh 7 sin 7 cosh Ay cos Ay -cosh 7 cos 7 sinh Ay sin Ay)

h = h y(sinh 27 + sin 27)
(60)

EtIo

This ratio is illustrated in figure 4 for a loading of m =

Axial Stress

From a preceding section (eqs. (11) to (14)), the nondimensional
axial-stress ratios can be written

N €
x‘b ﬁ xo Wt(Y)
Etkh="1"b2 kh - h (61)
and
Ny 72 €x, Wy(y)
b _ _ _ lo} b
Etkn  |T T y2 B @ (62)

In general, the nondimensional axial-stress ratios at the greatest
distance from the neutral surface are of primary interest. At y =0,
therefore,

N
()
y=0 _ % sinh y sin 7y l_
Etkh | 7(Sioh &7+ sin 27L N 7(C°th y-cot 7)| > (63)
h\/g l e
and
N
( xb)y=0 _ 4 ginh 7 sin ¥ [- u

S 7lcoth y-cot 7)| b (6h)

= 1 -
Etkh 7( sinh 2y + sin 2y
( >|_ h\/3(1 - u2)
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The preceding equations are illustrated in figure 5 in terms of

")y ()30

—¥=0 gng —AI=2 piotted against the beam-curvature parameter
Etkh Etkh -

%§£ for several values of t/h,

The curves plotted in figure 5 can be presented in another form by

referring the stress ratios to the elementary-beam-theory stress at
equivalent moment rather than at equivalent curvature. Thus,

- th)
-(Nxt)y=o _ (Etkhy:o t]/£1r1
tmh/Ig  mr/Elp
t/h

and

Etkh _t/h
tmh/Ig mr/EIg
t/h

(Nxb>y=0 ) (") y=0 _kr

In figure 6, these nondimensional stress ratios are plotted ageinst
the nondimensional moment parameter, with the small effect of changes in
the t/h ratio being neglected.

Approximate Formulas
When the shift in the neutral surface is neglected, simplified expres-

sions for deflection, bending moment, and axial stress are obtainable
from the resulting equations by expanding functions of 7 into finite
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power series to give

We(y) _ Wy ()

27

b2

(65)

(66)

(67)

h h
1 - Z.lt 1 - 7_h. 5
=-——9-O—h cosh Ay cos Ay + A—G—— ginh Ay s8in Ay + 1 - A
2
1+ 2r” 7 1+ 2r-
15 15
t/h t/n ¥\2
1420
15
and
-N
M __ ™
Etkh =~ Etkh
L b
L- 15 1t &
=- 2 cosh Ay cos Ay + — sinh Ay sin Ay
+ = 1+ ==

15

The foregoing approximate formulas are considered to be very satis-

kr

t/h

are of the order of several percent.

factory in the region 0 <

< 0.6. The maximum errors to be expected
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30
4
-Linear theory
1
h
3 — .4
2
mr/El,
t/h
A
0 .2 4 6
kr
t/h ,

Figure 2.- Relationship between bending moment and longitudinal beam

5
curvature. (IO = 2 -l:bh‘2 = i i)
15 2
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0 \
ht(O) + hb(o)
2h
‘60 2 4 6
t/h

Figure 3.- Ratio of beam thickness of loaded section to beam thickness
of unloaded section.

Undeformed shape

o< O

EtI
Figure L4,- Chordwise cover deflections under a loading of m = 0.285 —;HQ.

Neutral-surface shift is neglected.
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1.O T
h
.4 (compression cover)
0
~(Nxy)y=0 .4 (tension cover)
Etkh
and .8 AN
(Nxb)y-o
Etkh
.6
O 2 4 .6
kr N1 v

t/h

Figure 5.- Ratlio of midchord axial stress to elementary-beam-theory
stress Ekh at equivalent curvature.

1.4
_(NXt)y-O
tmh/ I,
and 1.2
(Nxp)ys0
tmh/ I,
1.0
0 . .2 3
m r/EIO

t/h

Figure 6.- Ratio of midchord axial stress to elementary-beam-~theory

stress mh/Io at equivalent moment. Neutral-surface ghift is
neglected.
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Figure 7.- Forces and moments acting on cover elements.
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